ALKALOIDS FROM SOLANUM HYPOMALACOPHYLLUM

A. Usubillaga
Instituto de Investigación Química, Facultad de Farmacia. Universidad de Los Andes, Apartado 142, Mérida, Venezuela

Abstract

Solanum bypomalacophyllum has yielded a new 4-keto steroidal alkaloid believed to be 22,26-epimino-4-oxo-5 α-cholestane-3 β-23 β-diol (3a), and desacerylsolaphyllidine (2a) already reported in Solanum ecuadorense. Previous work on this plant yielded solaphyllidine (1) and solamaladine.

Solanum bypomalacophyllum Bitter is a small tree native to the Venezuelan Andes where it grows wild in humid places at altitudes above 2500 meters. Solaphyllidine (1) is the most abundant alkaloid in the green berries of this plant (1). Tlc of a CHCl_{3} extract of the juice shows the presence of several minor alkaloids; one of them, solamaladine, was already reported (2), but its structure has been revised recently (3).

In this paper, isolation of desacetylsolaphyllidine (2a), an alkaloid previously found in Solanum ecuadorense (4), and 22,26-epimino-4-oxo-5 α-cholestane-3 β-23 β-diol (3a), a new 4-keto steroidal alkaloid, is described.

DISCUSSION

The juice obtained from 30 kg of green berries was extracted with CHCl_{3} as described in the experimental section. The crude alkaloids were dissolved in MeOH , solaphyllidine crystallized immediately upon cooling, and from the mother liquors, desacetylsolaphyllidine was obtained. Mild hydrolysis of $\mathbf{1}$ produces $\mathbf{2 a}$, and both alkaloids yield the same N, O-tetraceryl-derivative (2b).

1

$\mathbf{2 a}, \mathrm{R}=\mathrm{H}$
$\mathbf{2 b}, \mathrm{R}=\mathrm{Ac}$

The new alkaloid (3a) was obtained by preparative tlc of the mother liquors of 2a. The mass spectrum of $3 a$ shows a molecular ion at $m / z 431\left(\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{NO}_{3}\right)$, and the base peak at $m / z 114$ indicates a hydroxy methyl-piperidine side chain (5), the same as $\mathbf{1}$ and 2a. Because one of the remaining oxygens is a carbonyl, as shown by an ir band at 1712 cm^{-1}, the other was thought to be a hydroxyl at $\mathrm{C}-3$ on biogenetic grounds. The proton on C-3 appears as a triplet ($J=10 \mathrm{cps}$) and suggests that $3 \mathbf{a}$ also has a 3β-hydroxy- 4 keto moiety. On Table 1, the ${ }^{1} \mathrm{H}-\mathrm{nmr}(60 \mathrm{MHz})$ of 1, 2a, 3a, and its acetylated derivative (3b) are presented and can be compared.

A mild acetylation of 3 a yields a N, O-triacetyl derivative ($\mathbf{3 b}$). The ${ }^{1} \mathrm{H}$-nmr of this compound shows the presence of two O -acetyl and one N -acetyl group. The mass spectrum of $\mathbf{3 b}$ shows the molecular ion at $m / z 557\left(\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{NO}_{6}\right)$. The most abundant fragments at $m / z 198(100 \%)$ and $m / z 156(55 \%)$ indicate the conversion of the side chain to an N, O-diacetyl derivative.

The existence of a 3-hydroxy-4-keto moiety in 3a was confirmed by subjecting its acetate (3b) to a Huang-Minlon reduction. The carbonyl group and the 3-O-acetyl were removed, yielding $\mathbf{4}(6)$. The ir spectrum of $\mathbf{4}$ shows neither acetyl nor carbonyl bands. The triplet at $\delta 4.10$ attributed to the proton on $\mathrm{C}-3$ does not appear on the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of this compound (see Table 1). This signal is always observed in 3-hydroxy-4-keto alkaloids.

3a, $R=H$
$3 b, R=A c$

4

This chemical and spectroscopic evidence makes it possible to propose a $22,26-$ epimino-4-oxo-cholestane- 3β - 23β-diol structure for the new alkaloid (3a).

Table 1. ${ }^{\mathrm{t}} \mathrm{H}-\mathrm{nmr}$ Signals of Relevant Protons in 4-Keto Steroidal Alkaloids

Compound ${ }^{\text {a }}$	$\begin{aligned} & \mathrm{C}-18 \\ & \mathrm{CH} \end{aligned}$	$\begin{aligned} & \mathrm{C}-19 \\ & \mathrm{CH} \end{aligned}$	$\begin{gathered} \mathrm{C}-21 \\ \mathrm{CHCH}_{3} \end{gathered}$	$\begin{gathered} \mathrm{C}-27 \\ \mathrm{CH}-\mathrm{CH} \end{gathered}$	$\begin{gathered} \mathrm{C}-22 \\ \mathrm{~N}-\mathrm{C}-\mathrm{H} \end{gathered}$	$\begin{aligned} & \mathrm{C}-23 \\ & \mathrm{CHR} \end{aligned}$	$\begin{gathered} \mathrm{C}-3 \\ \mathrm{CHR} \end{gathered}$	$\begin{aligned} & \mathrm{C}-16 \\ & \mathrm{CHR}_{2} \end{aligned}$
1	0.695	0.72 S	$\begin{aligned} & 0.91 \mathrm{~d} \\ & U=7) \end{aligned}$	$\begin{aligned} & 0.82 \mathrm{~d} \\ & J=7) \end{aligned}$	$\begin{aligned} & 2.95 \mathrm{~d} \\ & (J=10) \end{aligned}$	$\begin{aligned} & 3.43 \\ & \text { (sextet) } \end{aligned}$	$\begin{aligned} & 4.10 t \\ & (J=10) \end{aligned}$	$\begin{aligned} & 4.96 \mathrm{t} \\ & (J=6) \end{aligned}$
2 a	0.695	0.695	$\begin{aligned} & 0.91 \mathrm{~d} \\ & (J=7) \end{aligned}$	$\begin{aligned} & 0.82 \mathrm{~d} \\ & (J=7) \end{aligned}$	$\begin{aligned} & 2.87 \mathrm{~d} \\ & (J=10) \end{aligned}$	$\begin{aligned} & 3.48 \\ & \text { (sexter) } \end{aligned}$	$\begin{aligned} & 4.09 t \\ & y=10) \end{aligned}$	$\begin{aligned} & 4.17 t \\ & (J=6) \end{aligned}$
2b	0.705	0.785	$\begin{aligned} & 0.96 \mathrm{~d} \\ & U=7) \end{aligned}$	$\begin{aligned} & 0.82 \mathrm{~d} \\ & U=7) \end{aligned}$	$\begin{aligned} & 3.35 \mathrm{~m} \\ & \left.\mathrm{~W}^{1 / 2}=8\right) \end{aligned}$	$\begin{aligned} & 5.11 t \\ & (J=10) \end{aligned}$	$\begin{aligned} & 5.26 t \\ & U=10) \end{aligned}$	$\begin{aligned} & 4.95 t \\ & (J=6) \end{aligned}$
3 a	0.695	0.705	$\begin{aligned} & 0.91 \mathrm{~d} \\ & J=7) \end{aligned}$	$\begin{aligned} & 0.83 \mathrm{~d} \\ & (J=7) \end{aligned}$	$\begin{aligned} & 2.97 \mathrm{~d} \\ & (J=10) \end{aligned}$	$\begin{aligned} & 3.47 \\ & \text { (sexter) } \end{aligned}$	$\begin{aligned} & 4.09 \mathrm{t} \\ & (J=10) \end{aligned}$	-
3b	0.705	0.735	$\begin{aligned} & 1.07 \mathrm{~d} \\ & (J=7) \end{aligned}$	$\begin{aligned} & 0.91 \mathrm{~d} \\ & (I=7) \end{aligned}$	$\begin{aligned} & 3.33 \mathrm{~m} \\ & (\mathrm{~W} 1 / 2=8) \end{aligned}$	$\begin{aligned} & 5.14 \mathrm{t} \\ & (J=10) \end{aligned}$	$\begin{aligned} & 5.18 \mathrm{t} \\ & (J=10) \end{aligned}$	-
4	0.705	0.785	$\begin{aligned} & 0.98 \mathrm{~d} \\ & (J=7) \end{aligned}$	$\begin{aligned} & 0.90 \mathrm{~d} \\ & (J=7) \end{aligned}$	$\begin{aligned} & 3.12 \mathrm{~d} \\ & (J=10) \end{aligned}$	$\begin{aligned} & 3.60 \\ & (\text { sextet }) \end{aligned}$	-	-
$\begin{array}{ll} { }^{\mathrm{a}} \mathrm{R}_{1}=\mathrm{OH} \text { in } \mathbf{1 , 2 a}, \mathbf{3 a}(\ln \mathbf{4} \text { only } \mathrm{C} 23 \mathrm{OH} \text { present }) & \mathrm{R}_{2}=\mathrm{OH} \text { in } \mathbf{2 a} \\ { }^{4} \mathrm{R}_{1}=\mathrm{CH}_{3} \mathrm{COO} \text { in } \mathbf{2 b} \text { and } \mathbf{3 b} . & \mathrm{R}_{2}=\mathrm{CH}_{3} \mathrm{CO} \text { in } \mathbf{1} \text { and } \end{array}$								

EXPERIMENTAL

Tlc was performed on silica gel G plates using $\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)$, and the spots visualized with I_{2} vapors. Melting points were determined on a Kofler hot-stage and are uncorrected. Optical rotations were measured on a Rudolph Research automatic polarimeter, model Autopol III. The ${ }^{1} \mathrm{H}$-nmr spectra were determined in CDCl_{3} solution with TMS as internal standard, and the chemical shifts are expressed as ${ }^{1} \mathrm{H}$ nmr in δ values. The ir spectra were recorded on a Perkin-Elmer model 377 spectrometer as KBr disks. The mass spectra were performed at IVIC on a Hitachi Perkin-Elmer RMU-6E at 70 eV using direct inlet. Microanalyses were performed at Dr. H. Malissa, G. Reuter Laboratorium, 5251 Elbach über Engelskirchen, West Germany.

Extraction and separation.-Green berries of S. bypomalacophyllum, (30 kg) were collected at El Valle, a few kilometers from Mérida in May, 1979. A voucher is kept at MERF herbarium (herbarium of the Faculty of Pharmacy, University of Los Andes at Merida). The berries were crushed the same day in a hammer mill. The juice obtained was left overnight in a refrigerator for the chlorophyll to settle. The clear liquid was shaken with CHCl_{3}, and the CHCl_{3} extract was then shaken several times with a $4 \% \mathrm{HOAc}$ sol-
ution. The aqueous layer was made alkaline with $\mathrm{NH}_{4} \mathrm{OH}$ and shaken with CHCl_{3} to obtain, upon evaporation of the solvent, a mass of 10.4 g of crude alkaloids, which were dissolved in hot MeOH . Upon cooling, 3.9 g of crystals were obtained, which upon tlc showed to be mainly solaphyllidine (Rf 0.48). A second crop of solaphyllidine was later obrained (1.8 g), and the mother liquor, left to evaporate at room temperature, rendered, after a few days, a crop of impure desacetylsolaphyllidine (1.1 g).

From these crystals, $\mathbf{2 a}$ was purified by repeated recrystallization from MeOH , mp 270-273 ${ }^{\circ}$; Rf $0.22 ;[\alpha]^{25} \mathrm{D}+50^{\circ}$ (c $0.20, \mathrm{MeOH}$); ir (CO) $1710 \mathrm{~cm}^{-1}$; ms m/z $447\left(\mathrm{M}^{+}\right), 429\left(\mathrm{M}^{+}-18\right), 414,412$, 114 (base peak). Calcd for $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{NO}_{4}, \mathrm{CH}_{3} \mathrm{OH} ; \mathrm{C} 70.14, \mathrm{H} 10.22$, N 2.92. Found; C 69.92, H 10.18, N 2.92%.

The mother liquors of $\mathbf{2 a}$ examined on tlc showed a main spot at Rf0.35, which corresponds to $\mathbf{3 a}$, as well as $\mathbf{1}$ and $\mathbf{2 a}$ and traces of minor components. This mixture was applied to ten silica gel HF plates (20 x 40 cm and 2 mm thick). After developing three times with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)$, the bands were visualized under uv light and scrapped off. The extract $(0.47 \mathrm{~g})$ obtained from the band between those of 1 and 2a was shown on tle to consist mainly of 3a. It was applied to five 2 -mm thick plates that were developed as previously described. The intermediate band was scraped off, and the extract was shown on tle to consist of 3 a with traces of 1 and $\mathbf{2 a}$. The new alkaloid was purified by recrystallization from $\mathrm{MeOH}, \mathrm{mp} 215-218^{\circ}$; $[\alpha]^{25} \mathrm{D}+19.5^{\circ}(\mathrm{c} 0.01, \mathrm{MeOH})$; ir $3470(\mathrm{OH}), 3320(\mathrm{NH})$, and $1712(\mathrm{CO}) \mathrm{cm}^{-1}$; ms: $\mathrm{m} / \mathrm{z} 431\left(\mathrm{M}^{+}\right), 413$ $\left(\mathrm{M}^{+}-18\right), 114$ (base peak, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}$). Calcd for $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{NO}_{3} ; \mathrm{C} 75.17$, H 10.44, N 3.25. Found; C 74.91, H 10.48, N 3.14\%.

Hydrolysis of solaphyllidine.-To a warm solution of 1 in 100 ml of $\mathrm{MeOH}, 0.5 \mathrm{~g}^{\text {of }} \mathrm{K}_{2} \mathrm{CO}_{3}$ in 10 ml of $\mathrm{H}_{2} \mathrm{O}$ was added. The mixture was boiled under reflux for 3 h . A tic test showed only one spot at Rf0.22. Water and $\mathrm{NH}_{4} \mathrm{OH}$ were added; upon cooling, the precipitate was filtered and washed with $\mathrm{H}_{2} \mathrm{O}$. The residue was crystallized from MeOH , and $\mathbf{2 a}$ was obtained, identical (mp , mmp, ir, and ${ }^{1} \mathrm{H}-\mathrm{nmr}$) to the alkaloid isolated from the plant.

Acetylation of 2a.-Anhydrous pyridine and $\mathrm{Ac}_{2} \mathrm{O}$ were added to 0.5 g of $\mathbf{2 a}$ and left overnight at room temperature. The following morning, iced $\mathrm{H}_{2} \mathrm{O}$ was added, and the flocculent precipitate was filtered and washed with $\mathrm{H}_{2} \mathrm{O}$. It was dissolved in iso-PrOH, and crystals of $\mathbf{2 b}$ with $\mathrm{mp} 204-205^{\circ}$ were obtained; $[\alpha]^{25} \mathrm{D}-24^{\circ}$ (c 0.6, MeOH); ir 1740, 1250 (O-Ac); $1710(\mathrm{CO}), 1650(\mathrm{~N}-\mathrm{Ac}) \mathrm{cm}^{-1}$; ms: m/z615 $\left(\mathrm{M}^{+}\right), 555\left(\mathrm{M}^{+}-60\right), 198$ (base peak, $\left.\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{3}\right), 156\left(55 \%, \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{2}\right)$.

Acetylation of $\mathbf{1}$. -In the same manner as explained above, 0.2 g of $\mathbf{1}$ was acetylated, and a product exactly equal to $\mathbf{2 b}$ was obtained (mp, ir, ${ }^{1} \mathrm{H}-\mathrm{nmr}$).

Acetylation of 3a.-In the same way, 0.2 g of $\mathbf{3 a}$ was acetylated with pyridine $/ \mathrm{Ac}_{2} \mathrm{O}$. The product was crystallized from MeOH and fine needles with mp $189-192^{\circ}$ were obtained; $[\alpha]^{25} \mathrm{D}-23.2^{\circ}$ (c 0.0056, MeOH); ir $1740,1250(\mathrm{O}-\mathrm{Ac}), 1712(\mathrm{CO})$, and $1650(\mathrm{~N}-\mathrm{Ac}) \mathrm{cm}^{-1}$; ms $m / z 557\left(\mathrm{M}^{+}\right), 497\left(\mathrm{M}^{+}-60\right), 454$ $\left(\mathrm{M}^{+}-60-\mathrm{COCH}_{3}\right), 198$ (base peak, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{3}$), $156\left(55 \%, \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{2}\right) ; m / z 123.2$ (metastable peak). Calcd for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{NO}_{6}$; C 71.09, H 9.16, N 2.51. Found; C 71.35, H 9.05, N 2.45%.

Huang-Minlon Reduction of $\mathbf{3 b}$.-A solution of $\mathbf{3 b}(80 \mathrm{mg})$ in diethylene glycol (4 ml) was refluxed with hydrazine hydrate (0.4 ml) for $2 \mathrm{~h} . \mathrm{KOH}$ was added, and the excess $\mathrm{H}_{2} \mathrm{O}$ and hydrazine hydrate were distilled off. The remaining solution was refluxed for anorher hour. After cooling, the mixture was poured on cold $\mathrm{H}_{2} \mathrm{O}$, and the white precipitate was filtered and washed with $\mathrm{H}_{2} \mathrm{O}$. The product was purified over a small alumina column (alkaline $\mathrm{Al}_{2} \mathrm{O}_{3}$, Activity II). The fraction eluted with CHCl_{3} contained 4 (45 mg) $\mathrm{mp} 252-257^{\circ}$; ir, no carbonyl or acetate absorption; ms $\mathrm{m} / \mathrm{z} 401\left(\mathrm{M}^{+}\right), 114$ (base peak, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}$). Calcd for $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{NO} ; \mathrm{C} 80.80, \mathrm{H} 11.72, \mathrm{~N} 3.49$. Found; C $80.53, \mathrm{H} 11.60, \mathrm{~N} 3.32 \%$.

ACKNOWLEDGMENTS

The author gratefully acknowledges the support of Consejo de Desarrollo Científico y Humanístico (ULA), grant FA-07.

LITERATURE CITED

1. A. Usubillaga, C. Seelkopf, J. Karle, J. Dale, and B. Witkop, J. Am. Chem. Soc., 92, 700 (1970).
2. A. Usubillaga, Rev. Latinoamer. Quim., 4, 32 (1973).
3. A. Usubillaga, V. Zabel, and W. Watson, Acta Crystallogr., B 38, 966 (1982).
4. A. Usubillaga, A. Paredes, P. Martinod, and J. Hidalgo, Planta Méd., 23, 286 (1973).
5. H. Budzikiewicz, Tetrabedron, 20, 2267 (1964).
6. C. Ruzicha, P.A. Plattner, and M. Furrer, Helv. Cbim. Acta, 17, 729 (1944).
